Fix: LangChain Dependences
This commit is contained in:
		| @@ -5,10 +5,14 @@ from langchain.chains.combine_documents import create_stuff_documents_chain | ||||
|  | ||||
|  | ||||
| def create_rag_chain(llm, retriever): | ||||
|     contextualize_q_system_prompt = """Given a chat history and the latest user question \ | ||||
|     which might reference context in the chat history, formulate a standalone question \ | ||||
|     which can be understood without the chat history. Do NOT answer the question, \ | ||||
|     just reformulate it if needed and otherwise return it as is.""" | ||||
|     contextualize_q_system_prompt = """ | ||||
|     Given a chat history and the latest user question \ | ||||
|     which might reference context in the chat history, | ||||
|     formulate a standalone question \ | ||||
|     which can be understood without the chat history. | ||||
|     Do NOT answer the question, \ | ||||
|     just reformulate it if needed and otherwise return it as is. | ||||
|     """ | ||||
|     contextualize_q_prompt = ChatPromptTemplate.from_messages( | ||||
|         [ | ||||
|             ("system", contextualize_q_system_prompt), | ||||
| @@ -21,12 +25,13 @@ def create_rag_chain(llm, retriever): | ||||
|     ) | ||||
|  | ||||
|     # ___________________Chain con el chat history_______________________- | ||||
|     qa_system_prompt = """You are an assistant for question-answering tasks.  \ | ||||
|     qa_system_prompt = """ | ||||
|     You are an assistant for question-answering tasks.  \ | ||||
|     Use the following pieces of retrieved context to answer the question. \ | ||||
|     If you don't know the answer, just say that you don't know. \ | ||||
|     The length of the answer should be sufficient to address what is being asked, \ | ||||
|     The length of the answer should be sufficient to address | ||||
|     what is being asked, \ | ||||
|     meaning don't limit yourself in length.\ | ||||
|      | ||||
|     {context}""" | ||||
|     qa_prompt = ChatPromptTemplate.from_messages( | ||||
|         [ | ||||
| @@ -37,4 +42,5 @@ def create_rag_chain(llm, retriever): | ||||
|     ) | ||||
|     question_answer_chain = create_stuff_documents_chain(llm, qa_prompt) | ||||
|  | ||||
|     return create_retrieval_chain(history_aware_retriever, question_answer_chain) | ||||
|     return create_retrieval_chain( | ||||
|         history_aware_retriever, question_answer_chain) | ||||
|   | ||||
| @@ -4,7 +4,9 @@ from langchain_chroma import Chroma | ||||
| def create_retriever(embeddings, persist_directory: str): | ||||
|     # Cargamos la vectorstore | ||||
|     # vectordb = Chroma.from_documents( | ||||
|     #     persist_directory=st.session_state.persist_directory,  # Este es el directorio del la vs del docuemnto del usuario que se encuentra cargado en la session_state. | ||||
|     #     persist_directory=st.session_state.persist_directory, | ||||
|     # Este es el directorio del la vs del docuemnto del usuario | ||||
|     # que se encuentra cargado en la session_state. | ||||
|     #     embedding_function=embeddings, | ||||
|     # ) | ||||
|     vectordb = Chroma( | ||||
|   | ||||
| @@ -13,3 +13,5 @@ def create_verctorstore(docs_split: list, embeddings, file_name: str): | ||||
|             documents=docs_split, | ||||
|             embedding=embeddings, | ||||
|         ) | ||||
|  | ||||
|         return vectordb | ||||
|   | ||||
		Reference in New Issue
	
	Block a user