from rag.split_docs import load_split_docs from rag.llm import load_llm_openai from rag.embeddings import load_embeddins from rag.retriever import create_retriever from rag.vectorstore import create_verctorstore from rag.rag_chain import create_rag_chain dir_pdfs: str = 'documents/pdfs/' file_name: str = 'onecluster_info.pdf' file_path: str = 'onecluster_info.pdf' docs_split: list = load_split_docs(file_path) embeddings_model = load_embeddins() llm = load_llm_openai() create_verctorstore( docs_split, embeddings_model, file_path ) retriever = create_retriever( embeddings_model, persist_directory="embeddings/onecluster_info" ) qa = create_rag_chain( llm, retriever) prompt: str =\ "Dame información detallada sobre los sercivios que ofrese OneCluster." respuesta = qa.invoke( {"input": prompt, "chat_history": []} ) print(respuesta["answer"])